Ionic and Covalent Bonding Created by: Vic Kuang # What is a Chemical Bond? A **chemical bond** is formed when the nucleus of one atom pulls on the electrons of another. The bond is formed by transferring or sharing electrons. We are going to talk about 2 types of bonds: lonic and Covalent. The type of bond is determined by **electronegativity difference**.. ## **Elec**tronegativity **Difference** Electronegativity describes the degree to which the atom attracts electrons in a chemical bond. If the electronegativity difference is 2 or more, then the bond is **10NIC**. If the electronegativity difference is less than 2, then the bond is **COVALENT**. **How** to find **elec**tronegativity **difference** To find the electronegativity of two atoms, simply look up their electronegativity value. For example, "Helium Electronegativity", "Fluorine Electronegativity", etc. Once you find out the electronegativity values of both atoms, **subtract them**. #### **lonic Bonding** **Ionic bonding** is the <u>TRANSFER</u> of valence electrons between atoms. It is formed when a **METAL** transfers one or more valence electrons to a **NONMETAL**. In ionic bonding, you want the atoms to have an electron number of either 0 or 8. <u>Lewis electron dot structures</u> show what happens to the valence electrons. Losing an electron is a positive charge and gaining an electron is a negative charge. In the example, Na becomes a positive charge for losing an electron and CI becomes a negative charge for gaining an electron Lewis Dot Structure Ionic Compounds #### **Properties of Ionic Substances** lonic substances have a number of properties that can help distinguish them from other substances. They are: - hard - good conductors of heat and electricity in their liquid form - high melting and boiling points #### **Covalent Bonding** **Covalent bonding** is the <u>SHARING</u> of valence electrons between atoms. It is formed two atoms, **BOTH NONMETALS** share electrons. In covalent bonding, the atoms share between them and don't become ions. Lewis dot structures In the example, you can see how the atoms are **sharing** electrons instead of transferring electrons. #### **Properties of Covalent Compounds** When a covalent compound is made, it gains new properties because it is a new substance. They are: - soft - low melting/boiling points - poor conductors of heat and electricity. #### Periodic Table of the Elements | 1
IA | | | | | | | | | | | | | | | | | 18
VIIIA | |---------------------------------|--|--|---------------------------------------|--|--------------------------------------|-----------------------------------|-----------------------------------|--|-------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|----------------------------------|-------------------------------------|-----------------------------------|------------------------------------| | Ĥ | | | | | Atomic Number | - H | - | - Symbol | | | | | | | | | Нe | | 1006 | IIA | | | | Name | Hydr | ogen | Atomic Weight | | | | 13
IIIA | IVA | 15
VA | 16
VIA | 17
VIIA | Hellum
40036
2 | | Li | Be | Electrons per shell> 1 | | | | | | | | | | | | Ň | Ó | F | Ne | | Lithium
4.94
3-5 | Beryttium | State of matter (color of name) Subcategory in the metal-metallaid-neometal trend (color of background) AUGUM SOUD UNKNOWN AUGUM METALS Matchinides Metalloids Unknown chemical properties | | | | | | | | | | Boron
10 In
2/3 | Carbon
12011
34 | 14.027
3-5 | Storpen.
15 Wet
2-4 | 18,998
35 | Neon
20.90
24 | | Na | Albaline earth metals Actinides Reactive nonmetals Reactive nonmetals Transition metals Noble gases Transition metals Noble gases | | | | | | | | | | | | Ši | 15
P | Š | Čl | År | | 5005000
22.50150520
34-1 | Magnesium | 3
IIIB | 4
IVB | 5
VB | 6
VIB | 7
VIIB | 8
VIIIB | 9
VIIIB | 10
VIIIB | 11
IB | 12
IIB | Al
Aluminium
25.982 | Silicon
28.985
284 | Phosphorus
30 M4 | Suther
12.64 | 25.45
34.1 | Argon
29 948 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K | Ca | Sc
Scandium | Ti
Titanium
47.647 | Vanadium | Cr
Chromium
St.Hist | Mn
Manganesie
S4,730044 | Fe | Co | Ni
Nickel
MAP2 | Cu | Zn | Ga
Gallium | Ge
Germanium
72,430 | As
Arsenic
34322 | Se
Setentum | Br
Branca
20304 | Kr | | 312183
2841
37 | 38 | 39 | 40 | 56 5475
24-5-2
41 | 24-04 | 24-0-2 | 24-16-2 | 45 | 46 | 24-9-1 | 14-8-7 | 24-9-3 | 74-9-4
50 | 51 | 52 | 76.50a
14-9-7 | 54 | | Rb | Sr | Yttrium | Zr | Nb | Мо | Tc
Technetium | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | 1 | Xe | | 85.4678
24.5547
55 | 25A2
3-8-8-2
54 | 88.9084
20-842 | 11324
3-6-6-02
72 | Niebium
92 90427
24 90-0-1
73 | Molybdenum
15.15
36.8-51
74 | (N)
26-8-5-7
75 | 10107
34-9-51
76 | Rhodium
102.91
2-0-16-14-1
77 | 101.42
20-10-10
78 | 107.87
2-6-16-16-1 | 10.41
20-5-52
80 | 101.82
24-8-8-3 | 198.31
3-6-6-8-4
8-2 | 121.36
3-6-8-5 | 127.60
34-15-15-4
84 | Sedine
19.10
20.9.9.7
85 | 19129
24-10-10-4
84 | | Cs | Ва | 57-71
Lanthanides | Η̈́f | Ta | Ŵ | Re | 0s | ĺr | Pt | Au | Hg | Τl | Pb | Bi | Po | Åt | Rn | | 192,90540794
24-78-78-11 | Bartum
107 529
1 6 16 18 6 2 | Lampates | Hafnium
128.49
24-19-23-5-2 | Tantatum
180.94768
3-0-70-20-02 | Tungsten
183.84
24/8/20/02 | Rhenium
184.21
24-9-32-0-2 | Osmium
196.23
3-6-35-35-3-2 | Iridium
19222
16/8/0/62 | Ptatinum
19538
24/8/02/31 | Gold
194,97
2-0-10-22-0-1 | Marcury
20039
34-8-2-82 | Thatlium
234.38
34-9-20-9-3 | Lead
2002
24-30-30-84 | Bismuth
206.18
24-18-25-64 | Potentium
(201)
14-16-20-16-4 | Astatine
(210)
2-6-9-20-9-7 | Radon
0225
2476-1278-8 | | Fr | Ra | 89-103 | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | FL | Mc | Lv | Ts | Ōg | | Francium
CIVII
74 100 941 | Radium
220 | Actinides | Rutherfordism
(NT)
24 B D D D 2 | Dubrium
QMB
34.5 P.35-0.1 | Sephorpum
(NT)
24 B (D D) 2 | Dobrium
020
243-200-02 | Hasslern
(277)
74 h (3-74-7 | Meltherium
(278)
2-51-0-0-5-7 | Cormstadium
(29)
24-9-2-9-9-1 | Roentpenium
(282)
24-9-20-0-2 | Copernicium
(290)
149-31-31-31 | Nihonium
(350
24/8-2010-93 | Fierovium
(290)
24-9-33-0-9-4 | Moscovium
Q90
24% 25/25/95 | Livermorium
(293)
14-9-0-9-4 | Tennessine
QNQ
349-2-2-1 | Opaniesson
(290)
24-9-22-9-4 | Ľa | Сe | Pr | Νď | Pm | Sm | Е́и | Gd | Τ̈́b | Ďу | Ho | Ér | Tm | Ϋ́b | Ľu | | | | | Lanthamum
138.91
2 8 8 9 3 2 | Certum
94812
2878/992 | Praseodymium
160,91
2 6 W 21 6 2 | Neodymium
MA24
28 8 22 8 2 | Promethum
(MS)
3 6 5 25 8 2 | Samarium
19836
2.6 % 26.6.2 | Europium
1056
243-2542 | Dadolinium
197.25
24-3-25-5-2 | Terbium
8833
24 8 27 8 2 | Dysgrosium
92.58
2.61928.62 | Holmian
8433
24 9 2453 | Eraum.
107.26
2 6 9 30 6 2 | Thubum
M8.10
24.35.842 | 100000000
00000
24 9 20 5 7 | Lutetium
19491
18491242 | | | | | A'C | Th | Pa | Ü | Np | Pu | Am | Cm | B'k | Čf | Es | Fm | Md | No | Lr | | | | | Actinium
(227) | Therium
20204 | Protectinium
23104 | Uranium
200.00 | Negtunium
GITO | Paterium
GAO | Americium
Okio | Curium
GLT) | Serketum
GND | Californium
(250
3.6.10.20.26.6.2 | Einsteinium
(352)
24.9.20.842 | Fermium
(397)
NANDONA? | Mandaleston
GSE
34-15-16-2 | Nebelian
CSS | Lawrencum
GMD
3439-7943 | | #### Here is a link to a more detailed periodic table: https://www.webelements.com/ #### THANKS Does anyone have any questions? #### **CREDITS** This is where you give credit to the ones who are part of this project. - Presentation template by Slidesgo - Icons by Flaticon - Infographics by Freepik - Images created by Freepik - Author introduction slide photo created by Freepik - Text & Image slide photo created by Freepik.com